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ABSTRACT 

We consider a class of ballistic, multidimensional random walks in random 

environments where the environment satisfies appropriate mixing condi- 

tions. Continuing our previous work [2] for the law of large numbers, 

we prove here that the fluctuations are Gaussian when the environment 

is Gibbsian satisfying the "strong mixing condition" of Dobrushin and 

Shlosman and the mixing rate is large enough to balance moments of 

some random times depending on the path. Under appropriate assump- 

tions the annealed Central Limit Theorem (CLT) applies in both non- 

nestling and nestling cases, and trivially in the case of finite-dependent 

environments with "strong enough bias". Our proof makes use of the 

asymptotic regeneration scheme introduced in [2]. When the environ- 

ment is only weakly mixing, we can only prove that if the fluctuations 

are diffusive then they are necessarily Gaussian. 
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88 F. COMETS AND O. ZEITOUNI 

1. I n t r o d u c t i o n  a n d  m a i n  s t a t e m e n t s  

Isr. J. Math. 

1.1 INTRODUCTION. Fix an integer d > 1, let S denote the set of 2d-dimen- 

sional probability vectors, and set ft = S zd. We consider all w E f~ as an 

"environment" for the random walk that  we define below in (1.1), and we denote 

by w(z, .) = {w(z, z + e)}e~Zd,lel= 1 the coordinate of w r f~ corresponding to 

z E Z d. The random walk in the environment w started at z C ~d is the Markov 

Chain {Xn} = {Xn; n >_ 0} with state space Z d such that  X0 = z and 

(1.1) P Z ( X n + x = x + e l X , ~ = x ) = w ( x , x + e ) ,  e e Z  d, H = I .  

Let P be a probability measure on ft, stationary and ergodic with respect to 

the shifts in Z d. We denote by Fz = p | pz  the joint law on f~ x (zd) N of 

{Xn}n and w. The process {Xn} under Fz is called the random walk in random 

environment (RWRE). We will denote by E z = E~,z, E z = Ep~ the expectations 

corresponding to F z  pz ,  respectively. 

An important  feature of random environments is the possible existence of 

traps, which are regions where the walk is drastically slowed down. (Traps do 

exist in the so-called nestling case, i.e., when condition (A4) below does not 

hold for any non-zero vector e.) An essential difference between one and higher 

dimension is that  the walk has to cross all the traps when d = 1, whereas it can 

go around them when d > 1. 

Much is known about the RWRE when d = 1; see [16] for a recent review, 

including a discussion of laws of large numbers and central limit theorems for 

product and non-product measures P.  Fluctuations have a normal limit or 

a stable limit law, according to the value of some parameter.  See also [10] 

for recent stable limit results with d = 1 and non-product environments. In 

dimension d > 1, when P is a product measure and in the ballistic regime, i.e., 

when there exists a deterministic direction g C S d-1 such that  lim sup Xn .g/n = 
ve > 0, the law of large numbers was first derived in the seminal paper [15] using 

a regenerative scheme. In the same context of P being a product measure, the 

central limit theorem for {Xn) was obtained in [13], assuming uniform ellipticity 

and Kalikow's condition, using this regenerative scheme. Further development 

(in the ballistic case with P a product measure) can be found in [14]. 

In the case of dependent environment, laws of large numbers have been ob- 

tained in [7], [8], [12], with a rather mild dependence structure. (Also, a CLT 

is proved in [12] for certain environments exhibiting finite-range dependence.) 

More realistic dependence structures - -  including Gibbs measures in the mix- 

ing regime - -  were considered in [11] and [2], where the law of large numbers is 
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proved. In [11], the author uses the approach of environment viewed from the 

point of view of the particle, while in our previous [2] we introduce a coupling 

method to find an asymptotic regenerative scheme. 

Our goal in this paper is to adapt this latter technique to derive central limit 

theorems for the RWRE when P is not a product measure. This provides then, 

to our knowledge, the first example of RWRE's in dependent environments that  

do not exhibit finite range dependence, for which CLT type statements hold. 

1.2 SOME ASSUMPTIONS: MIXING, ELLIPTICITY, DRIFT. In the sequel, we 

fix an g E IR d \ {0} such that  g has integer coordinates. With sign(0) = 0 and 
d {ei}i=l the canonical basis of Z d, let 

(1.2) C = {sign(g~)ei}d=l \ {0}. 

Define the cone of vertex x C ]R d, direction g and angle cos-l(~), ~ C (0, 1), by 

(1.3) C ( x ,  g, C) = {Y �9 ~d; (y _ x)  . g > ClY -- xllgl}- 

We also need in the sequel the truncated g cones defined as 

(1.4) C(x,g, L M )  = {y �9 ~e;y �9 C ( x , g , r  < M}, 

as well as the notation, for U C Z d, 

(1.5) Yu = ~r((wx)xcu). 

We also let ]. ] denote the Euclidean distance in IR d, and dist(A, B) with A, B C 

IR d denotes the Euclidean distance between the sets A, B (we always consider 

Z d as a subset of IR d, so that  the above is compatible with the ~2 distance on 
k~).  

In [2], we made the following two assumptions on the environment: 

ASSUMPTION 1.6: 

(A1) P is stationary and ergodic, and satisfies the following mixing condition on 
g-cones: for 311 positive ~ small enough thel:e exists a function r 0 

such that for any two events A, B with P(A) > O, A �9 a{w:; z �9 g _< O} 

and B �9 a{w~;z �9 C(rg, g,()}, it holds that 

P ( A A B )  
P(A) P(B) < r D. 

(,42) P is elliptic and uniformly elliptic with respect to g: P(w(O, e) > O; [e[ = 1) 

= 1, and there exists a ~ > 0 such that 

P(minw(O,e) > 2t~) = 1. 
eE$ 
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As described in [2], condition (A1) is satisfied for a class of Gibbs random 

fields satisfying the so-called weak mixing condition of Dobrushin and Shlosman. 

For the strong CLT results, we will need a stronger notion of mixing, based on 

Dobrushin-Shlosman's strong mixing condition. We introduce next this notion, 

starting with the 

Definition 1.7: Let k > 1, and let OAk = {z E AC;dist(z,A) _< k} be the k- 

boundary of A c Z d. A random field P is k - M a r k o v  if there exists a family 

rr of transition kernels - -  called specification - -  71 A : 7r A (l-[yeA dwv IJt 'OA ~ ) for 
finite A C Z d such that 

(1.8) P((Wx)zEA e .l~Ac) = rrA('l-T'oak), P-a.s. 

In addition, a k-Markov field P is called s t r o n g - m i x i n g  if there exist constants 

'7 > 0, C < oo such that for all finite subsets V C A C ~ d  with dist(V, A c) > k, 

and all y E A r 

(1.9) 
sup{D,,,(. I co) - ~rA(. I co')lly;w, co' E sA~,wx = cog Vx # y} 

_< C ~ e x p ( - T l z - y l ) ,  
z E O V  k 

with II" ]Iv = I]" ]lv~,v the variational norm on V, 

I1~- ~'llv = sup{#(A) - v(A);A E . T v } .  

The strong-mixing property holds for environments produced by a Gibbsian 

particle system at equilibrium in the uniqueness regime at high enough tem- 

peratures; see [3, 9]. Strong-mixing environments are weak-mixing, and by [2, 
Proposition 4.2], they are mixing on cones in the sense of Assumption (A1). 

Summarizing this, we have (AI')  ~ (A1), where we set 

A S S U M P T I O N  1.10: 

(AI')  P is a Gibbs, strong-mixing, k-Markov field. 

We will also need some conditions on the environment ensuring the ballistic 

nature of the walk. Let U be a finite, connected subset of Z d, with 0 E U, and 

define on U U OU an auxiliary Markov chain with transition probabilities 

{ E'~ [ETVo l(x,~=~} "T'u c ] 
(1.11) P u ( x , x §  E ~ ~(x,x+~)a~uo], xeU, lel--1 

L Z-,, n =0 1 { Xr,.=~ } 

1, xE  OU, e=O 
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where Tu c = min{n _> 0 : Xn E cqU1}. This chain is known as Kalikow's Markov 

chain [6]. We will denote by du(x)  = ~{e{=l e-Pu(x, x + e) the Kalikow drift, 

and by d(x, w) = ~{e{---1 ew(x, x + e) the RWRE's drift at x. 

In addition to (A1) and (A2), we will assume one of the two following drift 

conditions, that  ensure a ballistic behavior for the walk: 

ASSUMPTION 1.12: 

(A3) K a l i k o w ' s  c o n d i t i o n :  There exists a ~(~) > 0 deterministic such that 

inf du(x)  . ~q >_ 6(~), P-a.s. 
U, xEU 

(The infimum is taken over all connected finite subsets of  ~ d containing 

0.) 
(A4) N o n - n e s t l i n g  c o n d i t i o n :  There exists a deterministic 6(e) > 0 such that 

d(x ,w) .  ~ _> 5(~), P-a.s. 

Clearly, (A4) is stronger than (A3). Both conditions, together with (A1, 2), 

imply that  l i m n - ~  X~ �9 ~ = cx~ ]P~ see, e.g., [2, p. 887]. 

1.3 ASYMPTOTIC REGENERATIVE SCHEME. In this section, we recall some 

constructions and results from [2]. 

First, we define the RWRE on an enlarged space, depending on the vector/? 

with integer coordinates: instead of considering the law po = p | po  on the 

canonical space f~ x (zd) N*, we consider the following probability measure, 

~o = p @ Q | ~o,e o n  Q • W N* X ( z d )  N*, 

with W = {0} tA g and g from (1.2): Q is a product measure, such that  with 

e = ( s l , s2 , . . . )  denoting an element of W N*, Q(el = e) = ~, for e E g, while 

Q(c1 = 0) = 1 - tc[g[. For each fixed co, e, P~ is the law of the Markov chain 

{Xn}  with state space Z d, such that  X0 = 0 and, for every z, e E Z d, [e[ = 1, 

(1.13) 

--o 1<~'+1=~ [co(z, z + e) Pw,~(Xn+l = z + elXn = z) = l{en+~=e} + 1 - - a - - ~  -- al{e~e}]. 

po 
The point is that  the law of {Xn} under Q | w,e coincides with its law under 

po, while its law under ~o coincides with its law under po. 

We fix now, once and for all, a particular sequence g with coordinates in S, 

of length If[l, with sum equal to g: for definiteness, we take Y = (g l , . . .  ,glel~) 

with gl = ~2 . . . . .  E[gl[ = sign(gl)el,glg~l+l = g{e~{+2 . . . . .  s{~}+le2l = 
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sign(g2)e2,... ,El~h_i~dl+l . . . . .  EIg]~ = s ign(Q)ed .  We fix, through the whole 
paper, ~ > 0 small enough such that 

(1.14) s163 "~-~2,.. . ,~1 "~'" '~-s : g ~ C(O,g,~),  

and such that (A1) above is satisfied. 

For L E IgllN* we will denote by ~(L) the vector of length L consisting of the 

concatenation of L/ Ig l l  copies of *, i.e., 

gL) = (~ , e , . . . ,E ) .  

Define 

(1.15) D'  = inf{n k 0:  X n  ~ C(Xo,g,~)}. 

Assumption (A3) (together with (.41, 2)) implies that  ]?~ = oolwx , x . g <_ O) 

is bounded away from 0; see [2, p. 887]. For all L e IgllN*, set So = 0 and, 

using 0n to denote time shift, set 

$1 = inf{n _> L : X n - L  " g > m a x { X m  " g : m < n -  L } ,  

( c ~ - L , . . . , c ~ - l )  = r < ~ ,  

(1.16) R1 : D' o 0~1 + S1 ~ oo. 

Note that  the random times $1, R1, depend on both {X=}~ and {Cn}n. Define 
further, by induction for k > 1, 

Sk+l  = i n f { n  >_ Rk  : X n - L  " g > m a x { X m  " g : m < n -- L } ,  

(s163 ---- ~(L)} ~ OO, 

R k + l  : D '  o 0Bk+, + Sk-]-I __~ (x). 

These variables are stopping times for the pair { X n ,  Cn}n (depending on L), 

with 

0 : S 0  ~__S1 ~ R 1  <:$2 ~ "'" ~ oo, 

and the inequalities are strict if the left member is finite. Also, since X n "  g --+ c~ 

as n --+ co, Sk+l is ~~ finite on the set {Rk < oo}. Define 

T} L) = S K _ < C ~ ,  w i t h K = i n f { k _ > l : S k  < o o , R k = c ~ } < c ~ ,  

and 
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The random time T~ L) is the first time n when the walk performs as follow: at 

time n - L it has reached a record value in the direction +g, then it travels 

using the s-sequence only up to time n, and from time n on it does not exit 

the positive cone C(Xn, e, 4) with vertex Xn. The advantage in considering 

~_~n) is that  at these times, the RWRE travels ILl1 time units in the direction g, 

w i t h o u t  l ea rn ing  a n y  i n f o r m a t i o n  a b o u t  t he  e n v i r o n m e n t ,  allowing for 

decorrelation. 

Under (d[1, 2, 3), and if r < 6(~)/(3Ig[), then 7-(1L), T(L),... are finite ~~ 

for large L [2, Lemma 2.2 and p. 889]. For L G IgllN* we define T(o L) = 0, and 

fork_> 1, 

(1.17) ~L) ~L(.r~L) _(n)~ --K~L) ~L(x ~L ) 
= - ' k - l  J ,  = - 

(A rescaling by the factor an is needed in order to keep the variables ~ n ) ~ n )  

of order 1 as L --+ co.) The above random times yield an asymptotic (in the 

limit L --+ oc) regenerative structure, which can be expressed in term of the 

following coupling; see [2, Section 3]: 

Coupl ing:  We can enlarge once again our probability space [and we will con- 

tinue to denote by ~o annealed probabilities in this larger space], where the 

sequence {(~In)xIL))  }<>1 is defined, in order to support also: 

�9 a sequence { (4[ L), .~}L), /~I n)) }i_~1 of i.i.d, random vectors (with values in 

~LN* • aLzd • {0, 1}) where AI L) 6 {0, 1} is such that  

(1.18) ~~ = 1) = r := 2[~~ ' = co) - r162 

such that  the law of (~_~L),f(}L)) is identical to the law of (~[n) fi~n)) 
under the measure ~~ = oc], 

�9 and another sequence {(Z~ n), Y/(n))}i>_l such that  

= (1 - + <%, 

and such that  A[ L) is independent of {TJL}j<i-I,{<L))}j<_i_I, 
{A(L)l (z!L) y(L)] j Ij<_i-1 and of ~ ~ , ~ j. 

The joint law of the variables {(z~L),yi(L))}{>_I is complicated, but IYi(L)l _< 

Z} L) and IAl L) z~L) I < ~I L). In [2], we used the following integrability condition 

(with a > 1): 
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ASSUMPTION 1.19: 

(,45 ~) There exists an M = M ( L )  such that r  M ( L ) U ~  

1/a '  = 1 - 1/a) ,  and 

(1.20) 

where 

(Here and in 

) L- -~c~O (with 

~~176 = oc ,7  "i) > M) = O, 

.T L = a(w(y, . )  : g-y  < - L ) .  

the sequel, for a random variable X and measurable set A we use 

the notation E(X]A,  iT:) = E(X;A l iT ) /P (A]3  r) whenever P(A]J r) > 0.) We 

postpone our comments on this assumption to below (,45') in the next section, 

and recall at this point the law of large numbers [2]. 

THEOREM 1: Assume either (.41,2,3) and (A5 ~) for some a > 1, or (.41,2,4). 

Then, there exists a deterministic vector v with v �9 ~ > 0 such that 

lim Xn - -  = V ,  ] P ~  
n--+ oo n 

1.4 MAIN RESULT. Under strong mixing assumptions of the form of Assump- 

tion (,41'), we can give a full invariance principle for the RWRE, and a law of 

large numbers, under integrability conditions slightly weaker than (,45 a) with 

a > 2. Namely, set 

ASSUMPTION 1.21: 

(A5') There exist an a > 2 and M = M ( L )  such that 

(1.22) ~~176 = c~,Y L) > M) = 0, 

where .T L = a(w(y, .) : e . y  < - L ) .  

We immediately note that,  in the non-nestling case (,44), conditions (A5 ~) 

(for any a > 1) and therefore (A5') always hold. Indeed, in that  case, some 

exponential moments of ~L) are bounded under the quenched measure Q |176 , 

uniformly in L and in the environment; see [2, (3.16)]. But our results go far 

beyond the non-nestling case. 

Indeed, we give in [2, Section 5] various nestling examples where (A5 a) and 

(A5') hold: In the course of Theorem 5.1 therein, we prove that,  under condition 

(A3) with sufficiently large 5, M ( L )  grows at most exponentially. More precisely, 

for (f > (~1 (K, 0~), 

(1.23) M ( L )  < e mL, L >_ I, 

with m = m ( n , a , 6 )  finite. (The proof, given for a = 2 in [2], extends to a > 2.) 

We can now state our main result: 
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THEOREM 2 (Annealed CLT, strong mixing): Assume (41',2,3,5') .  Then 

there exist a deterministic, non-degenerate covariance matrix R and a deter- 

ministic vector v such that under po, with Sn(t) := [X[nt] - vtn]/v/-n, the path 

Sn(t), taking values in the space of right continuous functions possessing left 

Bruits equipped with the supremum norm, converges weakly to a standard Brow- 

nian motion of covariance R. 

Note that when strong mixing is available, Theorem 2 yields the law of large 

numbers under weaker integrability assumptions than those used in Theorem 1. 

Remark: It is worthwhile to note that the statement of Theorem 2 and its 

proof carry over to the case where P is the marginal on S zd of a strong mixing 

Gibbs Markov field on (S • S') z~ with S ~ any compact Polish space. For the 

sake of alleviating notation, we do not pursue this remark further. 

Our results for mixing environments satisfying only (A1) are considerably 

weaker. With M(L)  from (Ah~), r from (A1) and (1.18), we will assume 

the existence of sequences L = L(n) and k~ = k(L(n) ,n)  > n - ~  such that 

M(L)  
(1.24) t~La/2k(na/2-1) n--+~) 0, 

and 

(1.25) M(L)I/ar  ~-V/~n ~ O. 
n --~ o o  

 inally, set Ei : l  

THEOREM 3 (Annealed Gaussian behavior, weak mixing): Assume (,41,2, 3, 5 ~) 

with a > 2. 

(a) Assume further that sequences L = Ln and kn can be found that satisfy 

(1.24), (1.25), and the additional condition 

n 

(1.26) ~~ n-.~ 1. 
k~ 

Then, there exist a sequence of deterministic vectors v(n), with l i m n - ~  v(n) = 

v, and a sequence of deterministic, positive definite, symmetric matrices Rn, 

defined in (3.20) below, such that with Rn(w) = WT RnW, 

(1.27) lim ~ o ( X n ' w  - n v ( n ) . w  - o (  ) l  
n - ~  v ~  _~ x) - ]P .hf(0, Rn(w)) ~_ x = 0 
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for a11 x 6 ]~ and all w 6 ~d. (According to the context ,  we denote  by  A/'(a, B )  

the Normal  distr ibution of mean a and covariance m a t r i x  B ,  or a r.v. wi th  this 

law.) 

(b) It" (1.24) and (1.25) hold wi th  L -~ c~, kn = kn = e eL for some constant  

e > O, then one can find sequences Ln 6 [fI1N* and kn = k(Ln ,  n) sat is fy ing 

(1.24), (1.25) and (1.26). 

(c) In the f in i te-dependence case (i.e., r  = 0 for L >_ Lo), we can keep 

L = Lo fixed. In this case, v(n)  = v and Rn = R,  a posi t ive  definite m a t r i x  

independent  o f  n, and the s ta t emen t  is the s tandard central l imit  theorem: 

R - 1 / 2 ( X n  -- nv) /v / -n  ~ Af(O, Id) in l a w .  

Remark :  In view of (1.23), we see that  conditions (A1, 2, 3, 5 a) with a > 2, 

5 > (~1 and r _< e -~r  with large enough 3' ensure that  part (b) of Theorem 3 

applies. Hence, Theorem 3 applies to both non-nestling and nestling walks. On 

the other hand, we do not control in any way the convergence or non-degeneracy 

of the sequence of covariances Rn,  and cannot rule out sub or super diffusive 

behavior in the generality of assumption (,41). 

Before beginning the actual proof, let us give some guidance to the reader, 

and comparison with [15], [14] and [2]. 

The main idea in [15] is the introduction of regeneration times 7i (correspond- 

ing, in the setup of the current paper, to L = 0 and ~ = 0). When P is a product 

measure, the sequence of differences (Ti+I -- Ti, X~+I - X~ ) is i.i.d., and the law 

of large numbers (in [15]) and CLT (in [14]), under po  follow from the (non- 

trivial) analysis of moment bounds on ~-2 - T1. Unfortunately, when P is not 

a product measure, the sequence ~-i+1 - Ti is not stationary anymore, let alone 

i.i.d., and a modification of the regeneration argument is needed. 

In [2], we considered the case where P satisfies a mixing condition on cones 

of the form (A1). Using the representation in terms of the measure ~o, we 

introduced the regeneration times 7-} L) and the coupling with the i.i.d, sequence 

of times ~}L). By taking first n --+ co, followed by L --+ oc, and exploiting 

appropriate moment bounds, we were able to deduce a law of large numbers by 
showing that  the errors r t - l l f  (L) -- Tn(L)I, n-l l)((L) -- Y~n_l x}L) I can be made 

arbitrarily small, when n --+ c~, by choosing L large. 

Unfortunately, when trying to deduce a CLT in the mixing setup of [2], one 

has to control the quantities of interest at a much finer scale, viz. dividing by 

instead of by n. In this case, merely comparing with an i.i.d, sequence is 
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not good enough, even when L is large. In this paper, we propose two different 

strategies to deal with this problem. 

In the first, leading to Theorem 2, we deal with strongly mixing Gibbs fields. 

We consider the past history of the path (and the "truncated cones" visited by 

the path between regeneration times), and describe the evolution of the path in 

the next truncated cone as a "chain with infinite connections", in the language 

of [5]. By using the strong mixing, we provide in Lemma 2.2 a control on the 

dependence of the evolution on the "distant past". This control is strong enough 

to allow us to compare the sequence of differences ~ (L) T~L) ~Ti+ 1 --  , XT~+~ -- XT~L ))  

with a stationary one determined by the (unique) invariant measure of the above 

mentioned chain. Standard results for such chains then allow us to deduce the 

CLT. In this approach, the parameter L is kept fixed. 

The second strategy we describe, useful when the environment is weak but 

not strong mixing, is conceptually simpler: namely, we allow L to depend on n 

in such a way that  it grows slowly enough so that  error bounds valid for L fixed 

still apply, but fast enough such that  the comparison with an i.i.d, sequence (of 

parameter  L = Ln) is still good enough in the CLT scale. The main computation 

in this respect is contained in Lemma 3.4. This approach leads to Theorem 3, 

with the drawback that  the mean and variance of the Gaussian approximation 

depend on n, leaving open the issue of having good bounds on the variance. 

2. P r o o f  o f  T h e o r e m  2 

The key to the proof in the strong mixing case is to consider the sequence of 

t runcated cones of the environment produced by the regeneration times. To 

formalize this, define the space T of t runcated cone environments and paths as 

T = 0 {M} N PM X S C(O's 
M=y.f>0,yCZ d 

where the space of finite paths in the truncated cone C(0, 6, (, M) (cf. (1.4)) is 

defined as 

PM {Z__ (Zl .,Xk) C C(O,f, ~,M) N* = = , . .  : x 0  = 0 , ] z ~ + l - x ~ ]  = 1}.  

Set T = TU{s} ,  where s is an extra stop symbol. We set W = ~N* as the space 

of infinite words consisting of finite truncated cone environments and finite cone 

based paths w, with the restriction that  if wi = s then wj = s for all j > i. 

Note that  finite words of length k can be naturally viewed as elements of 142 by 
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setting wi = s for all i > k. )4; inherits naturally a Borel structure that  makes 

it into a measure space. We further define on 14; a lexicographic distance as 

d(w, w')  = 2 -  min{i:wiCw~} 

Next, we fix L and note that  the sequence V~ L), k _> 1, and the RWRE path X n  

define an element r = (rl ,  r2 , . . . )  �9 14; via 

rk ---- ((Xr(k~ -- XT(L)).e. -- eL, {Xj..bT(kh) -- XT(L); j  = 1, " * " ' 'k+l"r(L) -- T~ L) -- L},  

(2.1) {wu; Y �9 C(  X~(kL), e, i ,  (X~+) 1 - Xr(kL) ) " g -- eL)}), 

where eL = L]e]2/le]I is an integer by our restriction on the allowed L and e. 

We depict this construction in Figure 1. However, this will not be particularly 

useful to us as we think of )4; as a sequence of T valued symbols extending 

backward in time, and it will be convenient to think of r_ as defining a sequence 

of words w (k) = ( r k , r k - 1 , . . . , r l , s , s , . . . )  �9 T k. 

Further, recall from [2, pp. 889-890] the sigma-fields 

7~ 1 = O' (T~L) ,Xo ,Eo ,X1 , . . .  ,er~L)_l,Xr~L) , {w(y,  . ) ; e . y  < g. X ~L, - eL}), 

~-~k = O'(T~L) ...T(kL) , X O , C o , X I , . . . , C r ( L ) _ I , X r ( L ) ,  

.);e.  y < e.xi ) - eL}), 

and set 

/4 -- {(m, y l , . . .  , y m , W ' ) ; m  >_ 1,y~ E Z d, lYi+l - Yil = 1 ,ym" g > Yi" g, Vi < m,  

w' ~ Szd\{z:z'~>Y"'~}}. 

Then, ~o induces a probability distribution Qo o n / 4  such that,  for B G 7-/1, 

B = [.JteN*,zeZd Bt,z with Bt,z = B V) {~.~n) _ L = t, Xr~L)_L = z}, one has 

(~' (Bt,z) = Y~ ( (T~L) -- L, X1,  . . . ,X t ,  {wu}u.t<z.t) �9 S t , z ) ,  

and the law ~~ induces on the sequence r a probability distribution such 

that  the (random) kernels h~#( . Iwi_l , . . . ,  w2, Wl), u � 9  are well defined by the 

following: for each integer k, each measurable A C T k, and each measurable 

B � 9  

E ~ 1 7 6  ,rk)  �9 A17/1)] 
k 

= f B Q ~  ] ; " "  f T i A i H l h U ,  i ( d u i ' u ~ - l ' ' ' ' ' u l ) "  
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(To define the kernels hu,i, simply note that that ~~ E AITtk) defines a 

measurable function on bl • T k - l ,  which is exactly hu , i (A lu~_ l , . . . ,  Ul).) 

Figure 1. The sequence r_ = (rl, r2, . . .) ,  with ~ = (1 ,0 , . . . ,  0). The 

hyperplane (to the right of the origin) is determined by the first 

regeneration location X~L), and 7-/1 is determined by the path up to 

that location and the environment to the left of this first hyperplane. 

Shown are the cones C1, C2, C3 as in the proof of Lemma 2.2, the 

random walk path inside the cones, and the directed paths between 

the cones (of length L) determined by the sequence c. 

The following lemma is crucial to our approach: Although the sequence r has 

complete dependence in the past, the influence of distant coordinates vanishes 

as rapidly as the correlations in the environment. 

LEMMA 2.2: Let  i' k i, u (i) ( u i , . . , u l )  and u '(i') ' _ = . _ = ( u ~ , , . . . , u ~ )  besucb 
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t h a t  u i _  j = u ~ , _ j  f o r  j = O,. . . io.  Then,  

(2.3) sup Ith~,i+l(.lu(i)) - h~,#,+l(-lu~(r _< r  
u,u~ EDl 

Proo(o fLemma 2.2: The  proof  is a modif icat ion of the a rgumen t  in [2, L e m m a  

2.3], using the  s t rong mixing assumpt ion .  Especially,  the  case i = i ~ = i0 = 1 is 

a slight var ia t ion of the  proof  given in [2, L e m m a  2.3]. 

For u (i) , u de) f rom u, u ~ infinite sequences in T ,  we observe  t h a t  the  m a x i m u m  

over i, i r > io of the lef t -hand side of (2.3) is achieved with i = i ~ = i0, therefore  

we need to consider only the  la t te r  case. 

We first note  t h a t  the  values u, u l , . . . , u i  de te rmine  a sequence of points  

�9 i E Z d and t imes t~ E N* t h a t  encode the  regenera t ion  locat ions and  t imes.  

More  precisely, if u = (m,  Y l , - . . ,  Ym, WH,~) for the  app rop r i a t e  half  space Hu = 

{x;x .~  < Ym'~}, a n d i f u i  (mi,x~ i), . x (i) " - = �9 �9 , k~, ~c~) for some t runca t ed  cone Ci, 

we let p denote  the  projec t ion  on T given by p(u~) (mi, x~ ~) -(~)~ Then ,  --~ , . . . ~ :t:ki ) .  

the regenera t ion  locat ions and  t imes are equal  to 

i 

Ix (i) + Ls t~ = m + L + E [ k j  + L]. ~ o = y m + L ~ / l e l l ,  2 i = 2 i - l + t  k, 
j : l  

In fact ,  f rom (p(u) ,p(ul) , . . .  ,p (u i ) ) ,  the  whole pa th  on the  t ime interval  [0, ti] 

can be reconst ructed:  we denote  by 2 = 2[(p(u),p(ul) , . . .  ,p(ui))]  this finite 

p a t h  - -  in par t icular ,  x( tk)  = xk- 

Let  A be a measurab le  subset  of  7-, and write for shor t  1A ---- lrocA, where 

ro is defined by (2.1) for k = 0, with V(o L) = O. 
Let also F _> 0 be a ?-/1-measurable bounded  r a n d o m  variable [resp., 

G _> 0 bounded  measurab le  on a( r l , . . ,  r~)]. Then  for all Po E p(7-),p_ (i) E p(T) i, 
there  exist  r a n d o m  variables  Fpo [resp., Gp(~)], measurab le  wi th  respec t  to 

a({w(y,-); y .  e < Ym" g}, {Ok; 1 < k < m})  [resp., a({w(y,-); y E U}] such tha t ,  

on the  event  {p(ro) = Po}, F = Fpo [resp., on the  event  {p(rk) = Pk, 1 < k < i}, 
i G = Gp(~)]. Throughou t ,  we use the no ta t ion  U = Uj=I(Cj + 2~j-1), and we 

define the events  C(po) = {Xk = ~k;0  < k < to}, 

B ( p  (~)) = {Xk+~o - X~o = ~k+~o - 2~o;0 < k < ~ - to} 

with 2 = 2 [ ( p ( u ) , p ( u l ) , . . .  p(ui))] .  By  the  Markov  proper ty ,  

= E~ o Or[+~) 
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E Ep|162 o0~) 
(po,p( 11 )Ep(T)  I+1 

= ~ EPeo E~,e(Fpolc(po)a~_(,)lB(p_.))) x P~,or~e 
po,p(~) 

= E EP|174176176176 ) 
pOTp_ (i) 

x ~.oi,~ I P- EU) 
A 

= ~ Ep| -dpo,.(., x Ep| 
pO,p (i) 

x P~',o, E(AN{ D ' =  oc}) Wz,Z �9 U)] 

I01  

where we have set 

Gpo,p(,) = Gp_.(,)P,,,c(B(p(i))lXl, l < to, X~o = ~2o), 

which is (7(Wz,Z �9 U)-measurable. Define ho,i+l(@t(i) ) the conditional law of 

ri+l given r l , . . ,  ri, and define also pA by 

(2.4) 

f l A  = 

Po ,P~i ) 

allowing one to write 

E~ oOT:~ ) =PA + ~ E.OQ[-G~o,p~) 
po,p (i} 

(2.5) • e V)] 

= PA + Ep|174 �9 U)], E 
po,_p (1) 

where we have used that  
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holds on the set B(p (i)) ~ C(po), by definition of ho,i+l and since the sequence 
is i.i.d. Observe at this point that, by definition of Fpo, Gpo, 

E~ ( F G ho,i+ l (Air(i))) 

= ~ E~ 
(2.6) Po,p(i) 

= Z E~174176 e ( C ( p O ) ) l w z ' z  �9 U)] .  

po,p_ (~) 

Thus, (2.5) reads 

(2.7) E ~  o tgr[+] ) = PA + E~ (Air(i))). 

The crucial point to observe is that for g measurable with respect to 

a(wz, x E Ci+l + ~i), the strong mixing property (1.9) implies that, a.s., 

iE(gi~x,x �9 H~ u U) -E(gl~x,x �9 U)i < r 

with r = Cre -'yr/2. Hence, for f measurable with respect to a(wx,x  �9 Hu), 

this results in 

IE(ygl~x,x  �9 U)) - E ( f lw~ , x  �9 U ) E ( g I ~ , x  �9 U)I 

< r  �9 V)[Igl[~, 

replacing [2, (1.4)]. Hence, from (2.4) and (2.6) 

tPAI <_ r 1 7 6  �9 

Finally, one obtains from (2.7) 

IE~ o ~ (L)) - E~ < r176 
Ti~.l 

which is enough to prove the lemma. II 

Lemma 2.2 allows us to show that the kernels hu,k('[w) converge as k --+ c~. 
With MI(T) denoting the space of probability measures on T, we have 

LEMMA 2.8: There exists a measurable kernel h: 14; ~ MI(T) such that 

(2.9) 

and 

(2.10) 

sup Ilhu,k(.iw) -- h(-Iw')livar < r 
k >i,uEL{ ,wCTk- l ,wl E l/V:d( w,w~ ) <2-~ 

sup ]]h(.Iw ) - h(.Iw')iivar < 2r 
wEl4;,wrCVi;:d(w,wl)<2 -k 
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Proof." Fix u E N and w = (Wl,W2, . . . )  E IN, setting w (k) = ( W l , . . . , W k ) .  

Note that by Lemma 2.2, the sequence (h~,k(.IW(k-1)), k >_ 1) forms a Cauchy 

sequence with respect to the variation distance between elements of Mi(T) ,  
with 

sup Ilhu,k('lw (k- l ) )  - hu,,k,('lW(k'-l))llVar <_ r A k)L).  
u,u',wEW 

The existence of a limit h~(.Iw ) follows from the completeness of Mi(7`), to- 
gether with the estimate 

sup Ilhu"k('lw(k-1)) -- hu('lw)llVar ~- E r 
u,ul  , wE yV k~ > k 

One deduces that h~ in fact does not depend on u, and the estimate in (2.10). 
| 

We turn next to the construction of the "chain with infinite connections" 

with nice mixing properties alluded to above. Note that the kernel h and initial 
condition w E 14; determine a Markov chain {w(n)}n_>0 with state space l/Y, 

with law denoted P~(.). Indeed, with y E 7", w E IN, define yw E )4; by setting 

(yw)l = y and (yw)~ = wi_ 1 for i _> 2. Then, with w(n) E IN, let y(n + 1) be 
distributed according to h(.Iw(n)) , and set w(n + 1) = (y(n + 1)w(n)). 

By Lemma 2.8, the Markov chain thus defined satisfies conditions FLS(T, 1) 

and M(1) of [5, pages 47, 51]. Hence, by [5, Theorem 2.27], it is uniformly 

ergodic and possesses a unique invariant distribution. Further, for y E 7` with 

y = (M,x,_s) E 7` and x = ( X l , . . .  , X m )  , define f (y)  = x m. Fatou's lemma and 
condition (.45') then imply the integrability condition 

sup f If(y)l~h(dylw) < oc. (2.11) 
W J 

Setting g(y) = m, the law of large numbers ([5, Proposition 4.1.1 and Theorem 
4.1.2]) and another application of (,45') imply that 

(2.12) -1 E g ( w ( i ) l  ) ~ (21, _1 f (w(i ) l )  ~ (22, 
n n-+oo n n.-.+oo 

i=1 i=1 

almost surely, with Ci, C2 being deterministic and equal to the expectation of 

g(wl), f (wi ) ,  respectively, under the unique invariant measure mentioned above. 

Next, by [5, Theorem 4.1.5] and (2.11), and the r mixing of the sequence 

f (w( i ) l )  ensured by [5, Theorem 2.1.5], the invariance principle holds, under 
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Pw, for Zn(t), where 

1 [nt] 
Zn(t ) : :  --~ E [ f ( w ( i ) l  ) - C2g(w(i)l ) /C1], 

i=1 

with variance that  does not depend on the initial condition w. 

It thus remains to transfer the statement of the invariance principle from the 

Markov chain {w(n)}n>_O to the original sequence Sn. Toward this end, define 

X r(L , - -  C2T~L)/c1 
 n(k) = ' 

and recall that  by [2, Lemma 3.3], there exist deterministic positive sequences 

~L a n d  /]L --~ 0 such  t h a t  

(2.13) l imsupn- l l  T(L) - ~Lt~-Lnl < ~lZ, 
n--)-oo 

--o 
]~ -a.s., liminf/~L > tar > 0; 

L-+~ 

see [2, (3.5)] for the last fact. We assume throughout that  L is chosen large 

enough such that  both r < 1 and/]L < tav/2. 

Next, fix : E (0,1) and w E )4;. Due to Lemma 2.8, and the fact that  

~ k  r < oc, one may find a sequence k0(c) < oc (with k0(:) --+ cc as : ~ 0) 

such that  it is possible to construct a probability space with probability measure 

denoted l~ (both depending on : ,  w) on which there exist: 

�9 a sequence (rk)k distributed according to ~~ E -17/1), with r from (2.1), 

�9 a sequence w(n) distributed according to Pw, 

such that  

(2.14) ]~(3k _~ ko(~): rk ~ w(k)l) _~ c. 

Indeed, in view of Lemma 2.8, we can recursively couple (rk)k and (w(k))k so 

that  

]~(ri+l = w(i + 1 ) l l r l , . . .  , r i ,w(1) l , . . .  , w ( i ) l )  _~ 1 - r 

on {rl = w(/) l , i  > l > i -  k + 1}. 

Then, (2.14) follows easily from 5-~k r < co. 
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- - O  
Further, note that P -a.s., V5 > 0, 

sup [IX -X L, II+It- ' L)I]>25 I l) 

~ o , ,  (c)  . ( L I  _ & / ~ l T i k )  _~nsup~ [iTi+l - 'k ] > 
k=l 

(2.15) <n esssup~~ ~) > 5 ~ l D '  = ~ ,  7o ~) 
n < ( ~ - ~  ess sup g~ ( ( r} L ) )~ [ D' = oc, .F L) 

< nM(L)~;-~L ) O. 
- ( ~ ) ~  n . ~  

For any fixed T deterministic, set JT = 2(T + 1)/tava - i .  Note that,  by con- 

struction and in view of (2.14), 

(2.16) 17( sup S n ( k ) -  Sn(ko(G))- Zn(k )  -Jr- Z ( k ~  ) 0 )  ~ ~. 
\ k o ( e ) < k < _ n J T  n \ Tt / - -  

Further, 

(2.17) ~o( sup IXtll > ~v/-~) _< ~~ > ~v~) > o. 

It follows from (2.15), (2.16) and (2.17), by taking first n ~ oc and then c -+ O, 

that the invariance principle for Zn carries over to an invariance principle, under 
- - 0  

the measure P , for Sn([tn]), on the interval 0 < t < JT, with the same non- 

degenerate limit covariance. On the other hand, by the law of large numbers 
(2.12) and (2.15), 

(2.18) 

lim sup ~o sup - C2 > 5 
n - ~ c ~  k ~ _ n J T  

_<limsuplimsuplP sup ~k - c 2 - k  > 5  = 0 ,  
e--+O n---~oO \ k < n J r  ?7, r t  

while, by (2.14), 

~o, (n) Tn) <_ lim sup lira sup IV(7"ng T < (2.19) l i m s u p r  (Vnj T < ~ (L) Tn) = O. 
n-+oc e--+O n--+oc 

Hence, by the stability of the invariance CLT by random time changes [1, 

Theorem 14.4] together with (2.15), one concludes the invariance principle for 

$n(t) - -  C2t/C1. | 
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3. P r o o f  o f  T h e o r e m  3 

Throughout this section, we assume without further mention (.A1, 2, 3, 5 a) with 

a > 2. We recall the coupling construction introduced above (1.18), and we 

stress that  we take here L = L(n) --+ co. 
Fix a direction w as in the statement of part (a). The following preliminary 

lemma is easily proved. 

LEMMA 3.1: Assume (1.24). Then, with T(n L) = Ein___l ~ L ) ,  

Tk (L) 
n 

(3.2) --o ~(L) 
E T ~  

Proo~ Recall that  

1 in probability. 

(3.3) ~o~_~L) > tar~2 > 0, for all L large 

by [2, (3.5)]. Now +(L)~k= = ~ k ~ l  ~L),  and the ~JL) are i.i.d, by construction. 

Further, by (A5~), 

~o(~.[L))2 <_ ~o([~_[L)"])2/a <_ M(L)2/a 

and hence, by (1.24), 

Var  ? 

( ~o,.~( L ) ~2 
k~M(L)2/a ~ O. 

< k~(t=/2)~ L - ~  

Set 

and 

go:~;~) 
= E - i = 1  ~o~}L) ' 

rn = rL(W) = Var(w. [~}L) _ ~.~L)vL])" 

We recall from [2, p. 895] that VL --+ V as L -+ co. For fixed 5 > 0, define 

(~(L) -- T(kL)vL ) 

r v 5~) 

The following lemma is the basic ingredient for the Gaussian approximation. 

Let us denote by s  the law of a random variable Z, and by p the Prohorov 

distance between probability measures. 
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LEMMA 3.4: Assume kn satis/~es (1.24), and set 

As(~)  := {n :  rL > ~M}.  

Then, 

r L  
(3.5) l im l imsupp(~(z~ i ) (w) ) ,A f (o , (1A , (w) (n )+lA~(w) (n )~a i ) ) ) - - - -O .  

5-+0 n - + ~  

Proof of Lemma 3.4: Assume the statement does not hold true, that  is, for some 

~1 > 0 the left hand side of (3.5) is larger than ~1. Then, one may find 5 > 0 

arbitrarily small and a sequence nk = nk (5, Cl) such that  (we write L = Lnk) 

(3.6) p L:(2~L)(w)(nk)), 1A~(w)(nk) + 1A~(w)(nk) Af(0, 1) > 2 

Then, fixing 51 < 5, either one of the following occurs: 

(a) There exists a further subsequence, still denoted by nk, such that  both 

(3.6) and nk E As(w). 
(b) There exists a further subsequence, still denoted by nk, such that  both 

(3.6) and nk C As(w) c N As~ (w). 
(c) There exists a further subsequence, still denoted by nk, such that  both 

(3.6) and nk C As~ (w) c. 
Treating first case (a), one applies the Lindeberg-Feller theorem (see e.g. [4, 

p. 116, Theorem 4.5]). Indeed, one has on A5 that  2~i)(w) = 2~L)(w) and 

k,~ ~ -,~ (L) ~(L) ~ kn 
2?)(w)=E v.  

i=1 ~ ----: ' i----1 

k - -o  2 
and ~-~i~1 E Y/,L = 1. 

Next, we see that  on As, using H51der's and then Chebycheff's inequalities in 

the first and second inequalities and (A5 ~) in the third, 

k n 
- -o  2 ( 2 E  (Yi,L" l lY, ,LI>e)=E ~ [W'(f(~L)--~L)vL)]21 ~(~, _(L, 

i=1 rL ' "~ 1 ~-T1 "L,, >e_ 4-~." / 

1 "(f(}L)--?:L)vL) ~) _< m ] 

1 
(3.7) --- (e 4~-~) ~-2 (rL)~/2 go(e}L)~) 

< M(L)  
- -  r  
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Using (1.24), one sees that  the RHS in (3.7) converges to 0 with n --+ ce. This 

is enough in order to apply the Lindeberg-Feller theorem and conclude that for 
sequences {nk } in As, z~ L) (w) converges in distribution to a standard Gaussian, 
contradicting (3.6). 

Considering next case (b), the same argument as above proves that  

z~L)(w)~/rL converges in distribution to a standard Gaussian. Hence, 

since the factor multiplying 2~ L) (w) is uniformly bounded below by 1 on A~, 

p(s 4a-lt~-LrL~f(O, 1)) - -~  0, 
k --+ o~ 

which again contradicts (3.6). 

Finally, the proof of case (c) is a variance computation: Indeed, note that  in 
that  case, 

Var(2~L)(w)) = __~_ _~ ~ _ . r L  al 

In particular, with 5o denoting the atom at O, since 

sup{p(#,5o);#probabilitymeasureonN, f x2d#<~}5~_~ ~ ) O, 

and 

(3.9) 

Proof'. 

(3.10) 

and 

sup o2), o);o2 < + o, 
61---~0 

we can choose 51 small enough (as a function of E 1 and nothing else) such that 
the triangle inequality yields a contradiction to (3.6). | 

The next step involves transferring results from ~(L)k~ to Xr~) .  Toward this 

end, define the random variable 

w'(Xr~L) -- T~L)vL) 
WL = WL(w,5)  := ~ 

LEMMA 3.8: Assume kn such that (1.24) and (1.25) hold. Then, 
( ( ( rL ))) 

lim l imsupp s O, la~(w) + 1A~(w)~--~ = O. 
5-+0 n-+oe 

Recall that 

k~ 

i=1 

kn  

~"~K--LA(L)[ ~(L) 
XT~ ) = -L~(L)kn + z _ ~ -  --~ L----~ + y(L)].  

i=L 
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(3.11) 

and 

Since I.Y~L)I < ?~L) and Iy~(L)I ~ Z~ L), Lemma 3.8 follows from Lemma 3.4 of 

this paper and [2] as soon as one shows that 

kn n(L)~(L) 
E~=I ~'~ vi ~-~0 

V~n~ L 

~ A!L)z !L>probO" 
(3.12) ' 

i=1 ~ nt~L 

Let us prove (3.12), the proof of (3.11) being similar. We have 

k,~ z( L ) ~/--~L 

i=1 
<_ ~-~-~nSUpE~ L)) 

i 

< kn~/~L-YE~176 1/a 
i 

~ k n ~ M ( L ) I / ~ r  1/a' ) O, 
L---~ ~ 

by (1.25). | 

We have completed the preliminaries to the 

Proof of Theorem 3: The main issue is to control the error between X n and 

E T~, = _,~n 2 and theargu-  X k(~). In view of (3.10), note that - o  ~(L) kn~o?~n) > ~ ~_~ 

ment in [2] (equation below (3.13)) shows that 

(L) t _L~(L ) 
(3.13) ~o Ti, -- k,~ ) 0. 

kn 

Now, take Cn --= a-2LkL[rL V 6gL]. We start by showing that for all x, 

lim limsup ~ o ( X n . w -  nvL " w < x) 
(3.14) 5+0 n-+~ X/~n -- 

_ ~L x ] [  o. + , ,  = 

We have Vx, 51,52, 

~~ "w-- nvL "W ~_ x) ~-~~ V/.~n ( - - ~ - - - 1  > T(L) 52) 

7-(L) I X n ' W - X  (L).w--nVL.W+T~L)vL.Wl 
(3.15) + ~ o (  k,~ I 

- T -  - < 6 ,  ~ n  

x T  )vL w 
+ ~ 0 (  V ~ n  ___~ X + 51) :---- I "4- II + Il l .  

> 51,) 
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Using (3.13), (1.26), Lemma 3.1 and the estimates in Lemma 3.8, I --+ 0 as 

n --+ c~. By Lemma 3.8, III ~ r + x). So, using a similar lower bound on 

the left most probability in (3.15), using the continuity of ~(.) and boundedness 

of the variance in (3.9), the claim (3.14) follows as soon as we prove that  

(3.16) lira l imsupl imsup II = 0. 
51-+0 52 --+0 n--+(x) 

Recall that  ~o~L) >_ tar~2 for L large. Let 

J =  { j :  J~-L~ ~162 1 < 2(~2}. 

(We have k~ E J for large n.) Exactly as in the proof that  I ~ 0 as n --+ 0, one 

has 

,0 -~ ~ ( ~  ~ :  I~?~ -~  ~ ~)  ~ 0 rt n--+oo 
(3.17) 

Write 

~<~o+~O( 1 ~ :+:~>v~ ~> +) m a x  ~ l X : < : )  �9 w . . . .  

1 , (L) TJL) 61 (3.18) +~~ I>-~)::Po+P~+P2. jEJ V ~ 3t  

Concerning p2, note that  for n large, using (1.26) 

IJI _< 

for some constant cl. Hence, 

But 

462 n 
~-LE~ 

k~ 
+ 1 < cl 62 kn 

~ _<c1~o~o(~ ~ )  > ~1~) 

+ Cx~2knesssup ~o (~lZ~L) _L - > 4  ~ ) 6 1 ~  _L, 
: : P 2 , 1  + P2,2. 

4ac162kn _aL~O l~(L)~a 
P2,1 ~ -~_ t~ 1~ I,T i ) 

2 61 Cn 

< c262M(L) kn ~-an 
- 6~[rL Y 6t~L]a/2 k ~ - a L  

<~ C2(~ 2 M(L) > 0 
~- - I  - 5~ 6~/2 k~ ,~L/2 L ~  
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due to (1.24). Similarly, using [2, (3.10)] 

p:,2 < 4~c152kn~-C~LM(L)5~cg_ _< c a ~ k ~  --~ M(L) g-.~ 0 
1 n 1 

by (1.24). We conclude that 

(3.19) p2 ) 0. 
u-+co  

It thus only remains to treat Pl. As above, we can replace XT~L) and rJ L) by 

�9 - L c ' ( L )  I~-LTJ L), on a a oj and set whose complement has probability smaller than 

I~--L--(L)]J L)[>f(! m a x v ~  ~ a -J > /~ - A(.L) y!L)  i iV t m a x  - - / _ . ~  �9 
k, j e J  ~ n  J j E J  

which tends to zero. Now, since ~ n ) _  T~L)vL = z--,i=lV'J ,(~(n)--j ~.JL)vL)iS a series 

of i.i.d, random variables, one has, using Kolmogorov's inequality [4, p. 62], that 

( 5~) ~o sup a-L ~(L) ~(L) :F(L)vL . W ,~(L) W] > 

32[JJ~ -2L 52 
< rL<c4a- 7 

since rL <_ 2E~ 2 is bounded independently of L by (A5~). Substituting 

the last inequality, (3.19) and (3.17) into (3.18) gives (3.16). This completes the 
proof of (3.14). 

We end by proving that (3.14) implies Theorem 3 with 
(3.20) 

n-____~L Var(w. [A'} L) - ~L)vL]) where L = L(n). V(I~,) = VL,  R n ( W )  -- ~o~.~L) 

We argue by contradiction. If (1.27) does not hold for some w, take a subse- 

quence nk such that the left hand side is at least ~ > 0. Moreover, going to 

a further subsequence if necessary, we can assume that Rnk (w) converges to a 

limit R(w) �9 [0, GO]. If R(w) is positive and finite, this would contradict (3.14). 

If R(w) = 0, then 

~o,-~ ( L ) 
1io v L . w  

- --+0 i n L  2, 

then (Xn �9 w - nvL �9 w)/x/~ would tend to 0 in probability, yielding another 

contradiction. Now, if R(w) = c~, the two terms in (1.27) of the Theorem tend 
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to the same limit 0, 1/2, 1 according to x < 0, x = 0, x > 0, yielding again a 

contradiction. This proves part (a) of (1.27). 

Part (b) of the Theorem follows by setting 

[ [ n ] 
logn ] ~--L(n)~T~ L(n)) L = L(n) := kn := , 

c + log(l /n)J  lelll' 

where [z]lel: denotes the largest element of [t~[1N* not larger than z. Then, k,~ 

satisfy trivially (1.26), but also (1.24), (1.25) and both sequences tend to oo. 
Indeed, ~o~.~L(n)) >_ tar~2, and 

lim sup -'E~ c) = lim sup E Jr(--~ f 

n --)-o~ n--+ oo V �9 

(since the ratio of the two expectations tends to v �9 e; see sentence before [2, 

Theorem 3.4]), where ~ L ) .  ~ has exponential tails by [2, Lemma 5.3]. 

Finally, part (c) of the Theorem is immediate by observing that  if L = L0 
then A~ L) = 0, and the conclusion follows from the standard CLT for the sum 

of i.i.d, random variables of finite variance. II 
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